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We shall consider the rotational steady flows of an incompressible inviscid fluid in a 

bounded region D. It will be assumed that the vectors of velocity and vorticity are not 

everywhere colinear. It will be shown that the region of flow D is divided by the critical 

‘Bernoulli surfaces’ into a finite number of cells, in each of which the streamlines are 

either closed, or else, everywhere they closely encircle toroidal surfaces. 

1. The equations of motion. The Euler-Newton equation 

dv 
-= 

dt - grad P, 
dv a; 

-=$-+xv) 
dt (1.1) 

is equivalent to the ‘Bernoulli equation’ 

av 
at = [v, curl V] - grad a, div v = 0 (a = p + ‘/2v2) (1.2) 

For steady flow the Bernoulli equation takes the form 

Iv, curl VI = grad a, div v = 0 (1.3) 

Let us make use of the well known identity of vector mdyeis 

curl [u, b] = {b, U} + u div b - b dlv a (1.4) 

Here {b, a) is Poisson’s bracket 

{b, a}i = 2 % bj - % aj 

From the formulas (1.3) and (1.4) it follows that the velocity field of a steady flow 

commutates with its vorticity: 

lu, curl u] = 0 (1.5) 

We shall assume that the region of flow D is connected, finite and bonnded by an 
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analytical surface r; the boundary conditions are (u, n)r = 0 (tangency). 

2. Theorem. Let v be an analytic, steady velocity field, not everywhere colinear with 

its vorticity 

[v, curl V] # 0 (2.1) 

Then, almost all the streamlines are either closed or everywhere dense on two- 

dimensional toruses: all streamlines of other type fill a finite number of analytic sub- 

manifolds of D. 

Note. To remove the condition (2.1) is probably impossible, since flows with 

curl o z XV (A = const) can evidently have streamlines with very complex topology, typical 

for the problems of celestial mechanics (see [I], fig. 6). Such intricate streamlines, how- 

ever, can also exist in steady flows of a viscous fluid, closely resembling the flows of an 

ideal fluid. We notice, moreover, that formulas (1.1) to (1.5) and the theorem together with 

its proof are easily applicable to the case of flow of an ideal fluid in three-dimensional 

Riemann space (see [2]). 

3. Proof. Let us consider the level surfaces of the function ~(see (1.3)). The con- 

nected components of these surfaces will be called Bernoulli surfaces. The streamlines 

and lines of vorticity, according to (1.3), are orthogonal to grad u and therefore lie on the 

Bernoulli surfaces. We shall show that the majority of Bernoulli surfaces are toruses or 

rings. 

a b 

FIG. 1 a. b 

We shall call the value u., poor if there exists a point x in the region D where 

grada=Oanda(n)=ao, or, if there exists a point x on the boundary r, at which grad u 

is orthogonal to r and u (z) = CL,. From the analycity of u and r it follows that poor 

values of u are finite in number. The points x at which the function u takes poor values 

form a finite number of analytic sub-manifolds of D of dimensionality not higher than 2 

(since the function u is not constant, see (2.1)). Th ese sub-manifolds can be called poor, 

whilst all the remaining Bernoulli surfaces are good. 
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The poor sub-manifolds divide the region D into cells, each of which is stratified by 

good Bernoulli surfaces. A good Bernoulli surface, not intersecting with the boundary of 

the region r, is a closed smooth two~imensional surface, since grad U# 0 on it. ft turns 

out that this surface is a torus (see the case (1) and fig. la). 

A good Bernoulli surface intersecting with the boundary of the region r intersects with 

it transversely (since on the boundary grad u is not orthogonal to r). Therefore such a 

surface is smooth, with a boundary consisting of a finite number of smooth closed curves 

lying on r. It turns out that this surface is a ring (see case (2) and fig. lb). 

Case (1). LetMbeoq unbounded Bernoulli surface. Let us construct on M a system of 

angular co-ordinates a, p (mod 27~) so that the streamlines would have the equation 

da / dp = h = con&. This proves that M is a torus. But on the torus the lines 

da / dfl = h are closed if X is a rational number, and everywhere dense if 

X is irrational. Therefore the theorem in case (1) is fully proved if the co-ordinate U, fi 

can be constructed. 

Let us consider a system of ordinary differential equations in g (Z, 2, a) 

d?l - = scurl y (y) + tV, y (0, 5, 6) = 2, Q = (S, t) 
dz 

Here the parameter x is a point on the Bernoulli surface M, whilst (T is a point on the 

s, t-plane. Since the vectors v and curl v touch M, the point y lies on the same Bernoulli 

surface as x. When x is fixed, the formula 

determines the mapping of the CT plane onto the Bernoulli surface M. From (1.5) the relation 

of commutativity follows 

PP,(Of +J’) = Px (a + 0’) = Ppr(d) (a) (3.2) 

Since the vectors u and curl u are linearly independent on M. the mapping (3.2) has a 

good overlap (i.e. the local value of cr can be taken as a co-ordinate on M). In fact, how- 

ever, there are many points o overlapping x. These points form, according to (3.2), a 

‘lattice’ (if & (a) = PX (a’) = 5, then also & (a $- Cr’) = x)+ From the com- 

mutativity of the Bernoulli surface M it follows, that this lattice has two generators o, 

and 0, (two points of the plane such that any ~7 overlapping the point x has the form 

mC$ $ nU2 with integral m and n). Let us make on the plane CI a linear substitution of 

the variables s and t by a and ,& so that the co-ordinates of the points O, and @z would be 

(277, 0) and (0, 277). It is easy to see that a, ,6 (mod 277) are the required anguIar co- 

ordinates on the Bernoulli surface M. Hence the theorem is proved for the case (1). 

Case (2). Let M be a Bernoulli surface with a boundary. The boundary of M consists 

of several closed streamlines lying on the boundary surface r (since the vector t, is 

tangent to both M and r). Let z be a point on the boundary of M. Then, in the notation 

of (3.1), the closed streamline passing through u is 

The above hypothesis was verified by M. Hennon by numerical experiment on the machine 
of the astrophysics institute in Paris. 
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Px (02 4 = Pr (0, t + T) ( 03 < t< + cm) (3.31 

Let us put 2 = px (S, t). Th en, from the relations (3.2) and (3.3) it follows that 

pz (0, q = Pz (87 t + T) = Plr*(O,T) ts, t) = Px (s7 t> = 2 (3.4) 

i.e. the streamline passing through z is closed. But every point of h-f has the form 

2 = Pr (s, q f in view of the linear independence of v and curl tt and the connectedness 

of M). Therefore the formula (3.4) p roves that all streamlines on M are closed. At the same 

time this formula introduces on M, the co-ordinates of the ring 

t (mod T), s, O<s<S m S<s,(O 

Thus the proof of the theorem is completed. 
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